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Elucidation of Fe-O2 and O2-protein interactions in oxygen-
ated heme proteins has been the focus of a large number of
structural and spectroscopic studies. X-ray crystallographic
analysis on oxymyoglobin (O2Mb) suggested the presence of a
hydrogen bond between the distal histidine (His-64) and bound
O2; a proposal was later confirmed in neutron diffraction
experiments.1 Vibrational spectroscopy, including infrared (IR)
absorption and resonance Raman (RR) scattering, has provided
more detailed information on protein ligand interactions.2a-c,e,g

Yu and co-workers2a suggested that the Fe-CO stretching
(νFe-CO) frequency depends on the Fe-C-O bond angle and
accordingly reflects steric hindrance from nearby residues. More
recent work has indicated that the electrostatic field near bound
CO exerts a greater influence on the polarization of CO and its
νFe-CO frequency than does steric hindrance.2d-g

The Fe-O2 complexes of Mb and hemoglobin (Hb) mutants
have been much less studied, compared with their CO adducts,
because of autoxidation problems. Since the O-O stretching
mode (νOO) couples with internal modes of the trans ligand
(histidine),3 it is difficult to deduce the intrinsicνOO frequencies
from the observed frequencies. The Fe-O2 stretching (νFe-O2)
mode has been identified for several end-on type O2-bound heme
proteins by RR spectroscopy,4 and its observed frequency
directly reflects the strength of the Fe-O2 bond. We report
here theνFe-O2 Raman bands for His-64f Leu (H64L), Leu-
29f Phe (L29F), and Leu-29f Trp (L29W) mutants of sperm
whale Mb and discuss the effects of these residues on the Fe-
O2 vibration.

Preparation of mutant Mbs has been described elsewhere.2e

The purified protein was dissolved in 50 mM Na-phosphate
buffer, pH 7.4. Crystals of L29W MbO2 were grown in the P6
form using 2.2 to 2.6 M ammonium sulfate, 20 mM Tris-HCl,
1 mM EDTA.5a Diffraction data were collected on a Rigaku
R-axis IIC imaging plate. The number of unique reflections
was 17 658, and the starting model for molecular replacement
was L29F MbO2.5c Constrained least-squares refinement was
performed by X-PLOR. After nine cycles of refinement and
solvent placement, the crystallographicR-factor converged to
15.8%, with a final resolution of 1.8A and 77.5% completeness.
The coordinates and structure factors are being submitted to
the Brookhaven Protein Data Bank.
In order to observe theνFe-O2 Raman band of unstable oxy

species, we used the oxygenation system originally developed
for studies of cytochromec oxidase.6 About 20 mL of CO-
bound Mb (10µM) was circulated through the system at a flow
rate of 20 mL/min. Oxygen (16O2 or 18O2) was incorporated
into the solution just before the quartz Raman cell (cross section
) 0.6 × 0.6 mm2). Two laser beams, which were obtained
from a single Kr+ laser (Spectra Physics, Model 2016), but
separated with a prism, were focused on the flow cell. One
laser beam, at the upstream side (406.7 nm, 20 mW), photo-
dissociates CO from COMb. O2 competitively binds to the
photodissociated deoxyMb due to its larger binding rate.5a,b

Raman scattering from the O2-bound hemes is excited with the
other laser beam (413.1 nm, 2 mW), which is located 100µm
on the downstream side from the 406.7 nm beam. With the
flow rates employed, the O2 adduct is monitored at 0.1 ms after
CO-photodissociation. The heme is quickly oxidized after O2

binding, but its Raman spectrum is observed before autoxidation.
The original reduced CO-bound form is restored from the
autoxidized Mb during one cycle of the circulation system.6

Figure 1(a) shows the RR spectra in the 950 to 350 cm-1

region for the16O2 (A) and18O2 (B) adducts of the H64L mutant
Mb excited at 413.1 nm. The band at 490 cm-1 arises from
the νFe-CO mode of recombined and unphotolyzed COMb,
whose frequency is in agreement with the values reported for
the equilibrium form of COMb.2c,gSince theνFe-CORaman band
is considerably enhanced in intensity near the Soret region, the
band appears strong even if its concentration is relatively low.
A band at 570 cm-1 in spectrum A is shifted to 543 cm-1 in
spectrum B, and this is unequivocally demonstrated by their
difference spectrum (trace C) in which the strong porphyrin band
at 675 cm-1 is completely canceled. Accordingly, the bands
at 570 and 543 cm-1 in spectra A and B are assigned to the
16O2-Fe and18O2-Fe stretching modes, respectively. We note
that these two frequencies are remarkably close to those of the
wild-type oxyMb (571/544 cm-1).4d,h

Generally theνFe-CO andνCO frequencies are very sensitive
to amino acid replacements in the heme pocket.2c,e,g For
example,νFe-CO of H64L Mb (490 cm-1) is significantly lower
than that of the wild-type Mb (509 cm-1).2g In contrast, the
νFe-O2 frequency of H64L oxyMb (570 cm-1) is insignificantly
different from that of the wild-type oxyMb and native oxyHb
(571 cm-1),4a-d while the Fe-His stretching frequenceis of
H64L (221 cm-1) and native (220 cm-1) deoxyMbs are
practically the same.2g The sameνFe-O2 frequency (571
cm-1)4g,h is seen for cytochromec oxidase (CcO) in which a
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Cu ion (CuB) exists at 4.5 A from the heme iron,7 whereas the
νFe-CO frequency of CcO (516 cm-1)8 is significantly higher
than those of other heme proteins.2a,c,g

Figure 1(b) displays the RR spectra in the 700-400 cm-1

region for the16O2 and18O2 adducts of wild-type, L29F, and
L29W Mbs excited at 406.7 nm and their difference spectra.
The band at 571 cm-1 for the 16O2-bound wild-type Mb is
shifted to 544 cm-1 for the 18O2 adduct, in agreement with
previously reported results.4d TheνFe-O2 band of horse oxyMb
was also observed at 571 cm-1 under these conditions (data
not shown). The corresponding band is at 568 cm-1 for L29F
Mb and at 574 cm-1 for L29WMb, their18O2-isotopic frequency
shifts being more clearly seen in the difference spectra. The
frequency shift between L29F and L29W MbνFe-O2 bands is
small,∼6 cm-1. The intensity changes of theνFe-O2 band are
caused by differences in their O2 affinities (Table 1).
Comparison of the Fe-O2 stretching frequencies, F-O-O

bond angles, and the rate and equilibrium constants for O2

binding to wild-type, H64L, L29F, and L29W Mb are shown
in Table 1. There is no correlation between O2 affinity, k′O2,
kO2, andνFe-O2. Electrostatic interactions with His64 and Phe29
have little effect on the stretching frequency but produce large,
15-50-fold increases inKO2. There is a correlation between
νFe-O2 and the Fe-O-O angle observed in the crystal structures
of wild-type, L29F, and L29WMbO2. The L29F mutant shows
the expected 120° angle, whereas the angles in the wild-type
(118°) and native (116°) proteins appear to be slightly smaller,

although the observed differences are within the estimated error
of (4°.5a,d The structure of L29W MbO2 was determined for
this work, and its active site is shown in Figure 2. The Fe-O2

complex is clearly distorted by steric hindrance with the large
indole side chain. The Fe-O-O angle is only 111°. The 9°
difference between L29F and L29W MbO2 corresponds with a
6 cm-1 increase inνFe-O2; however, the changes in Fe-O-O
angle are at the limits detectable by X-ray crystallography (Table
1). The weak inverse relationship betweenνFe-O2 and the Fe-
O-O angle is probably due to kinematic effects on the
molecular vibrations. In marked contrast toνFe-CO, νFe-O2

shows no dependence on the electrostatic field adjacent to the
bound ligand. The H64L mutation removes the positive field
due to Nε-H of the distal imidazole, whereas the L29F mutation
adds positive field due to the edge of the phenyl multipole. There
is an∼40 cm-1 difference between theνFe-CO values for these
two mutants,2g whereas only a 2 cm-1 difference is observed
between the correspondingνFe-O2 values. The Feδ+-O-Oδ-

system is highly polar, but the bond orders appear to be fixed
with no alternative resonance structures. In contrast, the Fe-
C-O system is apolar existing as an admixture of two
alternative resonance structures involving net changes in bond
order and alteration in the charge at the O atom: Feδ--CtOδ+

and Feδ+dCdOδ-. Our results point out these important
chemical differences between the Fe-O2 and Fe-CO adducts
and the differential effects of globin residues on the bond
strengths and vibrational properties of these complexes.
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Figure 1. (a) RR spectra in the 950-350 cm-1 region for the16O2

(A) and 18O2 (B) adducts of Leu-64 mutant Mb and their difference
spectrum (C). (b) RR spectra in the 700-400 cm-1 region for the16O2

(A, C, and E) and18O2 (B, D, and F) adducts of wild type (A and B),
Leu-29f Phe (C and D) and Leu-29f Trp (E and F) mutant Mbs,
and their difference spectra [16O2 minus18O2; wild type (G), L29F (H),
and L29W (I)]. The ordinate scales in all the raw spectra are normalized
with the intensity of porphyrin bands. Experimental conditions; (a) probe
beam: 413.1 nm, 2 mW; pump beam: 406.7 nm, 20 mW at the sample;
(b) excitation: 406.7 nm, 5 mW at the sample; accumulation time:
960 s (a) and 640 s (b) for each spectrum; sample: 10µM Mb (a) and
40 µM (b) in 50 mM Na-phosphate buffer, pH 7.4.

Table 1. Comparison ofνFe-O2 (16O2) and O2 Binding Parameters
for Position 29 Mutants of Recombinant Sperm Whale Myoglobin
at 20°C, pH 7a

myoglobin
νFe-O2
(cm-1)

Fe-O-O
angle

k′O2
(µM-1 s-1)

kO2
(s-1)

KO2
(µM-1)

wild-type 571 118( 4 17 15 1.1
H64L 570 98 4100 0.023
L29F 568 120b 21 1.4 15
L29W 574 111 0.25 8.5 0.029

a The rate and equilibrium constants were taken from ref 5b, and
the Fe-O-O angles for wild-type and L29F O2Mb from ref 5c.b From
refs 5a and 5d and the estimated errors are(4°.

Figure 2. Stereoview of the distal pocket of sperm whale L29WMbO2.
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